Efficient vacuum-free-processed quantum dot light-emitting diodes with printable liquid metal cathodes.

نویسندگان

  • Huiren Peng
  • Yibin Jiang
  • Shuming Chen
چکیده

Colloidal quantum dot light-emitting diodes (QLEDs) are recognized as promising candidates for next generation displays. QLEDs can be fabricated by low-cost solution processing except for the metal electrodes, which, in general, are deposited by costly vacuum evaporation. To be fully compatible with the low-cost solution process, we herein demonstrate vacuum-free and solvent-free fabrication of electrodes using a printable liquid metal. With eutectic gallium-indium (EGaIn) based liquid metal cathodes, vacuum-free-processed QLEDs are demonstrated with superior external quantum efficiencies of 11.51%, 12.85% and 5.03% for red, green and blue devices, respectively, which are about 2-, 1.5- and 1.1-fold higher than those of the devices with thermally evaporated Al cathodes. The improved performance is attributable to the reduction of electron injection by the native oxide of EGaIn, which serves as an electron-blocking layer for the devices and thus improves the balance of carrier injection. Also, the T50 half-lifetime of the vacuum-free-processed QLEDs is about 2-fold longer than that of the devices with Al cathodes. Our results demonstrate that EGaIn-based solvent-free liquid metals are promising printable electrodes for realizing efficient, low-cost and vacuum-free-processed QLEDs. The elimination of vacuum and high-temperature processes significantly reduces the production cost and paves the way for industrial roll-to-roll manufacturing of large area displays.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zinc complexes exhibiting highly efficient thermally activated delayed fluorescence and their application to organic light-emitting diodes.

Metal complexes emitting thermally activated delayed fluorescence based on intra-ligand charge transfer and enhanced by metallization were synthesized. Organic light-emitting diodes using a thermally stable zinc complex processed by vacuum vapor deposition achieved an external quantum efficiency of nearly 20%.

متن کامل

Stable, efficient, and all-solution-processed quantum dot light-emitting diodes with double-sided metal oxide nanoparticle charge transport layers.

An efficient and stable quantum dot light-emitting diode (QLED) with double-sided metal oxide (MO) nanoparticle (NP) charge transport layers is fabricated by utilizing the solution-processed tungsten oxide (WO3) and zinc oxide (ZnO) NPs as the hole and electron transport layers, respectively. Except for the electrodes, all other layers are deposited by a simple spin-coating method. The resultin...

متن کامل

Vacuum-free transparent quantum dot light-emitting diodes with silver nanowire cathode

Efficient transparent quantum-dot light emitting diodes (QD-LEDs) are demonstrated by using a silver nanowire (AgNW) cathode. The devices are fabricated through a solution technique, not any vacuum processes are involved. Almost identical performance is obtained for both sides of the transparent device, which is primary due to the high transmittance of AgNW cathode. The maximum luminance (effic...

متن کامل

Thin-film Encapsulation of Organic Light-Emitting Diodes Using Single and Multilayer Structures of MgF2, YF3 and ZnS

In this research, the lifetime of green organic light emitting diodes (OLEDs) is studied using four passivation layers. To encapsulate the OLEDs, MgF2, YF3, composed of alternating MgF2/ZnS and YF3/ZnS layers were grown by thermal vacuum deposition. Measurements show that the device lifetime is significantly improved by using YF3 and ZnS as passivation layers. However, diodes encapsulated by Mg...

متن کامل

Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control.

Infrared light-emitting diodes are currently fabricated from direct-gap semiconductors using epitaxy, which makes them expensive and difficult to integrate with other materials. Light-emitting diodes based on colloidal semiconductor quantum dots, on the other hand, can be solution-processed at low cost, and can be directly integrated with silicon. However, so far, exciton dissociation and recom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 8 41  شماره 

صفحات  -

تاریخ انتشار 2016